Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7725253 | Journal of Power Sources | 2018 | 8 Pages |
Abstract
The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6â¯Î¼m) are assembled by hierarchical ZnO nanosheets (â¼27â¯nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200â¯mAâ¯hâ¯gâ1 at 0.1â¯Aâ¯gâ1 after 80 cycles. As well as good long-cycling stability (638 and 420â¯mAâ¯hâ¯gâ1 at 1 and 5â¯Aâ¯gâ1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Huichao liu, Ludi Shi, Dongzhi Li, Jiali Yu, Han-Ming Zhang, Shahid Ullah, Bo Yang, Cuihua Li, Caizhen Zhu, Jian Xu,