Article ID Journal Published Year Pages File Type
7727531 Journal of Power Sources 2016 7 Pages PDF
Abstract
The present study aims at developing a silicon/soft-carbon nanohybrid material for high performance lithium-ion battery (LIB). It is composed of micronized silicon coated with so-called “soft-carbon” dispersed in soft-carbon matrix at nanometer level. This material is characterized with abundant nanosized voids with diameter of ca. 70 nm and hard bulk skeletal structure. It exhibited a long cycle life of 163 charging and discharging cycles with a large capacity of 850 mAh/g and retention rate up to 90% of the initial capacity in a half cell with Li-metal counter electrode. For this new material, the volume expansion ratio was 6.9% at a capacity level of 1100 mAh/g. This electrode capacity is approximately three times larger than that of graphite-based electrode currently used in LIB. Furthermore, this electrode retained 80.9% of its capacity at 250 cycles in a full cell with a LiCoO2 counter electrode. Addition of 5 wt % fluoroethylene carbonate (FEC) to the electrolyte improved the retention up to 81.3% after 300 cycles. These results demonstrate the usefulness and high possibility of this material as the negative electrode of LIB.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,