Article ID Journal Published Year Pages File Type
7728234 Journal of Power Sources 2016 7 Pages PDF
Abstract
The role Keggin-type phosphomolybdate (PMo12O403−) ions (adsorbed on carbon-supported PtRu, PtRu/C) on electrooxidation of ethanol is addressed here. The combined results obtained using Differential Electrochemical Mass Spectrometry, X-ray Photoelectron Spectroscopy and Cyclic Voltammetry are consistent with the view that presence of the Keggin-type polyoxometallate, phosphomolybdate, ions (adsorbates) leads to enlargement of the current densities associated with electrooxidation of ethanol at potentials greater than 700 mV vs. RHE. This increase of the anodic currents is correlated with the higher acetaldehyde yield which is likely to reflect changes in the reaction kinetics (e.g. more dynamic dehydrogenation of ethanol leading to acetaldehyde) or in the reaction mechanism defined by the preferential surface modification resulting not only in faster kinetics but also in higher selectivity with respect to acetaldehyde production. It is apparent from the spectroscopic data that modification of PtRu/C nanoparticles with phosphomolybdate ions leads to suppression of the formation of Ru surface oxides.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,