Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7728912 | Journal of Power Sources | 2016 | 10 Pages |
Abstract
In the present work, we report a composite of industrial-grade material LaCePr-oxide (LCP) and perovskite La0.6Sr0.4Co0.2Fe0.8O3âδ (LSCF) for advanced electrolyte layer-free fuel cells (EFFCs). The microstructure, morphology, and electrical properties of the LCP, LSCF, and LCP-LSCF composite were investigated and characterized by XRD, SEM, EDS, TEM, and EIS. Various ratios of LCP to LSCF in the composite were modulated to achieve balanced ionic and electronic conductivities. Fuel cell with an optimum ratio of 60 wt% LCP to 40 wt% LSCF reached the highest open circuit voltage (OCV) at 1.01 V and a maximum power density of 745 mW cmâ2 at 575 °C, also displaying a good performance stability. The high performance is attributed to the interfacial mechanisms and electrode catalytic effects. The findings from the present study promote industrial-grade rare-earth oxide as a promising new material for innovative low temperature solid oxide fuel cell (LTSOFC) technology.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Chen Xia, Baoyuan Wang, Ying Ma, Yixiao Cai, Muhammad Afzal, Yanyan Liu, Yunjuan He, Wei Zhang, Wenjing Dong, Junjiao Li, Bin Zhu,