Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7731973 | Journal of Power Sources | 2015 | 8 Pages |
Abstract
Herein, we report a novel electrocatalyst consisting of Pt nanoparticles supported on a polyindole (PIn)-functionalized multi-walled carbon nanotube (MWCNT) composite (Pt/PIn-MWCNT) for use in the methanol oxidation reaction (MOR). The PIn-MWCNT support is synthesized via in situ chemical polymerization of indole on the MWCNT surface. The transmission electron microscopy (TEM) images indicated that the Pt nanoparticles were approximately 3.0Â nm in size and were uniformly deposited on the surface of PIn-MWCNTs with no aggregation into larger clusters. X-ray photoelectron spectroscopy (XPS) measurements confirm the strong electron interaction between the Pt nanoparticles and the PIn-MWCNT support as well as the formation of the Pt-N bond. The electrochemical tests demonstrate that the Pt/PIn-MWCNT composite exhibits much higher electrocatalytic activity, durability and CO tolerance than the Pt/MWCNT and commercial Pt/C catalysts toward MOR. The results indicate that the as-prepared Pt/PIn-MWCNTs are promising for use as an anode electrocatalyst in direct methanol fuel cells (DMFCs).
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Rui-Xiang Wang, You-Jun Fan, Li Wang, Li-Na Wu, Sheng-Nan Sun, Shi-Gang Sun,