| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 7732609 | Journal of Power Sources | 2015 | 8 Pages |
Abstract
The wide band-gap of TiO2 semiconductors hinders the photocatalytic hydrogen generation under visible light. In this research, we introduce glutathione-protected gold (Au-GSH) nanoclusters as a sensitizer to extend the active region of TiO2 up to a wavelength of 510Â nm under visible light spectrum. We demonstrate that Au-GSH nanoclusters are capable of enhancing photocatalytic effects for hydrogen generation in photo-electrochemical cells (PECs). The combined effects of metal nanoclusters and sacrificial agent (EDTA) enhance the photocurrent up to six times more than what can be achieved using Au-GSH nanoclusters without EDTA. Moreover, the mechanisms of interaction between Au-GSH nanoclusters and EDTA have been investigated through instantaneous photoresponse measurements. A single electrode system has been designed to simplify PECs for hydrogen generation, which exhibits the same enhanced photocatalytic effect.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Hongkai Wang, Fuyi Chen, Weiyin Li, Tian Tian,
