Article ID Journal Published Year Pages File Type
7733188 Journal of Power Sources 2015 6 Pages PDF
Abstract
Spent lithium ion batteries that contain valuable metal elements such as Co, Ni, Mn, Cu are being landfilled in many countries and raising resources depletion and human toxicity potentials. Low cost and high efficiency recovery process is highly desired. In this work we confirmed that high performance Ni1/3Mn1/3Co1/3(OH)2 precursor and LiNi1/3Mn1/3Co1/3O2 cathode material can be synthesized from leaching solution of a lithium ion battery recovery stream. The precursor was synthesized from a typical co-precipitation process with carefully controlling the reaction parameters. Electrochemical properties including rate capacity and cycle life were tested to evaluate the final product. The results show that the cathode material synthesized from spent lithium ion battery recovery stream is performing a discharge capacity of 158 mAh/g at first cycle of 0.1C and 139 mAh/g at first cycle of 0.5C cycle life test. After 100 and 200 cycles, still over 80% and 65% of capacity is remained, respectively. The materials are also evaluated independently at Argonne National Laboratory.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,