Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7733807 | Journal of Power Sources | 2015 | 6 Pages |
Abstract
We proved that sluggish kinetics on the cathode and the imbalance of cathode kinetics cause voltage reversal in a stacked microbial fuel cell (MFC) equipped with a non-Pt cathode. Catholyte aeration to a unit MFC against passive air diffusion to the cathode in the other unit MFC shifted voltage reversal between the two units, due to improved mass transport and O2 concentration effects in the aerated MFC. The shifted voltage reversal returned to an original status when catholyte aeration was stopped. A Pt-coated cathode increased the rate of oxygen reduction reaction (ORR) by a factor of â¼20, as compared to the non-Pt cathode. As a result, the anodic reaction rate that became slower than the rate on the Pt-cathode limited current density to overpotential in the stacked MFC equipped with the Pt-cathode. This work shows that dominant kinetic bottlenecks, which are the primary cause of voltage reversal, can be shifted between individual MFCs of stacked MFCs or electrodes depending on relative kinetics.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Junyeong An, Bongkyu Kim, In Seop Chang, Hyung-Sool Lee,