Article ID Journal Published Year Pages File Type
7734182 Journal of Power Sources 2015 8 Pages PDF
Abstract
The current work presents a numerical and experimental investigation into a passive ejector for recovering the anode off-gas in a proton exchange membrane fuel cell (PEMFC) system. The proposed ejector is consisted of a convergent-divergent channel and a suction channel, and it is connected with the anode outlet of PEMFC system for recovery the anode off-gas into the main gas supply. Numerical simulations based on a three-dimensional compressible steady-state k−ɛ turbulent model are performed to examine the effects of the inlet mass flow rate and nozzle throat diameter on the pressure, Mach number, temperature, suction channel mass flow rate, outlet channel mass flow rate, and suction channel entrainment ratio, respectively. The numerical results are confirmed by means of an experimental investigation. It is shown that supersonic flow conditions are induced in the ejector; resulting in the induction of a vacuum pressure in the suction channel and the subsequent recovery of the anode off-gas at the outlet of the main channel. In addition, it is shown that the mass flow rate in the suction channel increases with an increasing mass flow rate at the primary channel inlet. Finally, the results show that a higher entrainment ratio is obtained as the throat diameter of the nozzle in the ejector is reduced. Overall, the results presented in this study provide a useful source of reference for developing the ejector devices applied to fuel cell systems while simultaneously avoiding extra energy consumption.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,