Article ID Journal Published Year Pages File Type
7734529 Journal of Power Sources 2015 11 Pages PDF
Abstract
With increasing availability of more durable membrane materials for proton exchange membrane fuel cells, there is a need for a more stressful test that combines chemical and mechanical stressors to enable accelerated screening of promising membrane candidates. Equally important is the need for in-situ diagnostic methods with sufficient spatial resolution that can provide insights into how membranes degrade to facilitate the development of durable fuel cell systems. In this article, we report an accelerated membrane stress test and a degradation diagnostic method that satisfy both needs. By applying high-amplitude cycles of electrical load to a fuel cell fed with low-RH reactant gases, a wide range of mechanical and chemical stressful conditions can be created within the cell which leads to rapid degradation of a mechanically robust Ion Power™ N111-IP membrane. Using an in-situ shorting/crossover diagnostic method on a segmented fuel cell fixture that provides 100 local current measurements, we are able to monitor the progression and map the degradation modes of shorting, thinning, and crossover leak over the entire membrane. Results from this test method have been validated by conventional metrics of fluoride release rates, physical crossover leak rates, pinhole mapping, and cross-sectional measurements.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,