Article ID Journal Published Year Pages File Type
7734575 Journal of Power Sources 2015 28 Pages PDF
Abstract
In this paper we describe a novel catalyst based on RuO2-NiO nanorod arrays constructed in situ on a Ni foam substrate by a hydrothermal process for catalyzing the hydrogen evolution reaction (HER). Field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), linear scanning voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) are used to systematically investigate the microstructure, composition, and electrochemical performance of the catalyst. The prepared electrode exhibits excellent HER performance and long-term stability. This impressive electrochemical performance is largely attributed to the material's unique nanostructure. Noticeable the presence of nickel oxide/hydroxide on the surface of the catalyst promotes the dissociation of water and the formation of hydrogen intermediates that can then adsorb onto the nearby ruthenium species and recombine into molecular hydrogen at a very rapid rate. The hydrothermal method for directly growing electroactive nanostructured arrays on a conductive substrate offers a promising route for developing a new class of Ni-based high performance electrodes for the HER in practical applications.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,