Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7735888 | Journal of Power Sources | 2014 | 8 Pages |
Abstract
This work investigates the ammonia electro-oxidation considering electrochemical and direct ammonia fuel cell (DAFC) experiments. The working electrodes/anodes are composed of Pd/C, PdIr/C (90:10, 70:30, 50:50, 30:70 and 10:90 atomic ratios) and Ir/C. Solutions of 1 mol Lâ1 NH4OH and 1 mol Lâ1 KOH were used for electrochemical experiments while 1.0, 3.0 and 5.0 mol Lâ1 NH4OH in 1.0 mol Lâ1 KOH were used in DAFC. X-ray diffraction analysis of PdIr/C electrocatalysts suggests the formation of PdIr alloy, while transmission electron micrographs show the average particle diameters between 4.6 and 6.2 nm. Electrochemical experiments indicate PdIr/C 30:70 as the best electrocatalyst in accordance with DAFC. The maximum power densities obtained with PdIr/C 30:70 as anode using 5 mol Lâ1 NH4OH and 1 mol Lâ1 KOH at 40 °C are 60% and 30% higher than the ones obtained with Pd/C and Ir/C electrocatalysts, respectively. The enhanced synergic effect in this specific composition may be assigned to an optimal ratio of palladium sites that dehydrogenates ammonia at lower overpotential with the lower surface coverage of Nads on iridium. Furthermore, electronic effect between palladium and iridium might also contribute to the decrease of poisoning on catalyst surface by Nads.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
M.H.M.T. Assumpção, S.G. da Silva, R.F.B. De Souza, G.S. Buzzo, E.V. Spinacé, M.C. Santos, A.O. Neto, J.C.M. Silva,