Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7737038 | Journal of Power Sources | 2014 | 8 Pages |
Abstract
In this study, we describe the successful fabrication of cobalt grown in situ on macroscopic alginate hydrogels (Co@AHs) and demonstrate that the as-prepared Co@AHs can act as a cost-effective and recyclable catalyst for hydrogen generation from the hydrolysis of NaBH4. The structure and morphology of the Co@AHs catalyst are identified by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The resultant Co@AHs samples show an excellent catalytic performance for the hydrogen generation from NaBH4 hydrolysis. The catalytic activity of the Co@AHs towards the hydrolysis reaction is systematically investigated by varying different reaction parameters, such as the catalyst dosage, temperature, and initial concentration of NaBH4 or NaOH. The Co@AHs catalyst can be easily separated after catalytic reaction and readily recycled over four successive reaction cycles. Considering that the eco-friendly and inexpensive Co@AHs is catalytically effective with superior recyclability, it should have potential application in the hydrogen generation from the hydrolysis of borohydrides.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Lunhong Ai, Xiaoyan Gao, Jing Jiang,