Article ID Journal Published Year Pages File Type
7737569 Journal of Power Sources 2014 9 Pages PDF
Abstract
Lithium-ion cells, especially when used in electric vehicles at varying operation conditions, require a sophisticated battery management to ensure an optimal operation regarding operation limits, performance, and maximum lifetime. In some cases, the best trade-off between these conflictive goals can only be reached by considering internal, non-measurable cell characteristics. This article presents a data-driven model-reduction method for a strict electrochemical model. The model describes the charging process of a lithium-ion cell and possibly occurring degradation effects in a large temperature range and is presented in Part I of this contribution. The model-reduction process is explained in detail, and the gained model is compared to the original electrochemical model showing a very high approximation quality. This reduced model offers a very low computation complexity and is therefore suitable for the implementation in a battery management system (BMS). Based on this model, an advanced charging strategy is presented and evaluated for possible reductions in charging times especially at low temperatures.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,