Article ID Journal Published Year Pages File Type
7737885 Journal of Power Sources 2014 8 Pages PDF
Abstract
A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing methods under realistic conditions. Part II of the work examined the sealing glass stability, microstructure development, interfacial reaction, and volatility issues of a 3-cell stack with LSM-based cells. After 6000 h of testing, the refractory sealing glass YSO7 showed desirable chemical compatibility with YSZ electrolyte in that no discernable interfacial reaction was identified. In addition, no glass penetration into the thin electrolyte was observed. At the aluminized AISI441 interface, the protective alumina coating appeared to be corroded by the sealing glass. Air side interactions appeared to be more severe than fuel side interactions. Metal species such as Cr, Mn, and Fe were detected in the glass, but were limited to the vicinity of the interface. No alkaline earth chromates were found at the air side. Volatility was also studied in a similar glass and weight loss in a wet reducing environment was determined. Using the steady-state volatility data, the life time weight loss of refractory sealing glass YSO77 was estimated to be less than 0.1 wt%.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,