Article ID Journal Published Year Pages File Type
7738329 Journal of Power Sources 2014 9 Pages PDF
Abstract
Flooding at the cathode is the greatest barrier to increasing the power density of polymer electrolyte fuel cells (PEFCs) and using them at high current densities. Previous studies have shown that flooding is caused by water accumulation in the gas diffusion layer, but only a few researchers have succeeded in overcoming this issue. In the present study, microcoils are used as the gas flow channel as well as the gas diffuser directly on the microporous layer (MPL), without using a conventional carbon-fiber gas diffusion layer (GDL), to enable flood-free performance. The current-voltage curves show flooding-free performance even under low air stoichiometry. However, the high-frequency resistance (HFR) in this case is slightly higher than that in grooved flow channels and GDLs. This is due to the differences in the electron conduction path, and the in-plane electron conductivity in the MPL is the key to enhancing the microcoil fuel cell performance.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,