Article ID Journal Published Year Pages File Type
7740429 Journal of Power Sources 2013 20 Pages PDF
Abstract
A method for synthesizing nano-sulfur/polypyrrole/graphene nanosheet (nano-S/PPy/GNS) ternary composite with a dual-layered structure is described. By taking advantage of both capillary force driven self-assembly of polypyrrole on graphene nanosheets and adhesion ability of polypyrrole to sulfur, we develop a stable and ordered nano-S/PPy/GNS composite cathode for lithium/sulfur (Li/S) batteries. The high dispersion of nanoscopic sulfur on the surface of PPy/GNS composite and good electrical conductivity of GNS seems to benefit the sulfur utilization and the reactivity of the composite. Furthermore, PPy plays an important role in retarding diffusion of polysulfides out of the electrode. The resulting nano-S/PPy/GNS composite cathode delivers a high initial capacity of 1415.7 mAh g−1, remaining a reversible capacity of 641.5 mAh g−1 after 40 cycles at 0.1 C rate.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,