Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7740872 | Journal of Power Sources | 2013 | 5 Pages |
Abstract
The vanadium(V) cation structures in mixed acid based electrolyte solution were analyzed by density functional theory (DFT) based computational modeling and 51V and 35Cl nuclear magnetic resonance (NMR) spectroscopy. The vanadium(V) cation exists as di-nuclear [V2O3Cl2·6H2O]2+ compound at higher vanadium concentrations (â¥1.75 M). In particular, at high temperatures (>295 K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl·6H2O]2+ compound. This chlorine bonded [V2O3Cl2·6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2·6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based vanadium(V) electrolyte solutions.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
M. Vijayakumar, Wei Wang, Zimin Nie, Vincent Sprenkle, JianZhi Hu,