Article ID Journal Published Year Pages File Type
8059425 Coastal Engineering 2018 25 Pages PDF
Abstract
Numerical simulations were carried out to investigate hydrodynamic forces on submarine pipelines in oscillatory flows, with a focus on the conditions under which the pipeline diameter D is of a similar order of magnitude to the boundary-layer thickness δ, i.e., δ/D ∼ O(1). Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with shear stress transport (SST) k-ω turbulence closure were solved using a Petrov-Galerkin finite element method (PG-FEM). The effects of the seabed roughness ks/D and the Keulegan-Carpenter number KC = UmT/D on the hydrodynamic force coefficients were investigated, where ks is the Nikuradse's equivalent roughness, T is the period of oscillatory flow and Um is the amplitude of the oscillatory velocity. The diameter of the submarine pipeline is fixed at D = 0.1 m. The Reynolds number, defined as Re = UmD/υ (where ν is the kinetic fluid viscosity), ranges from 1 × 104 to 4.5 × 104. The numerical results show that the boundary-layer thickness increases with ks. Hydrodynamic force coefficients are significantly affected by δ/D in the range of δ/D ∼ O(1), while δ/D depends on ks/D and KC number. The negligence of velocity reductions in the wave boundary layer leads to overestimations of the submerged weight required for achieving on-bottom stability.
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , , , , ,