Article ID Journal Published Year Pages File Type
8147854 Current Applied Physics 2018 7 Pages PDF
Abstract
Core crystalline silicon nanowires with a heavily reduced amorphous shell have been successfully synthesised using palladium as a metal catalyst. We present two approaches to reduce the oxidation of the nanowires during the thermal annealing growth. The ratios of the amorphous shell to crystalline core of the nanowires produced, from the two methods, are compared and show a remarkable drop (hence thinner oxide) compared to wires fabricated using currently available techniques. In addition, a focused ion beam was utilised to contact the oxide-reduced nanowires for transport measurements, without first removing the thin oxide shell. The oxygen-reduced core-shell silicon nanowires showed a very low electrical resistivity (4 × 10−1 Ω cm). Our novel approach presents a new alternative to the production of low cost, high yield, highly conducting silicon nanowires offering a wide range of opportunities for semiconductor based technology.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , ,