Article ID Journal Published Year Pages File Type
8298935 Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010 7 Pages PDF
Abstract
Human T cell leukemia virus type 1 (HTLV-1) encodes p13, an 87-amino-acid protein that accumulates in the inner mitochondrial membrane. Recent studies performed using synthetic p13 and isolated mitochondria demonstrated that the protein triggers an inward potassium (K+) current and inner membrane depolarization. The present study investigated the effects of p13 on mitochondrial inner membrane potential (Δψ) in living cells. Using the potential-dependent probe tetramethyl rhodamine methyl ester (TMRM), we observed that p13 induced dose-dependent mitochondrial depolarization in HeLa cells. This effect was abolished upon mutation of 4 arginines in p13's α-helical domain that were previously shown to be essential for its activity in in vitro assays. As Δψ is known to control mitochondrial calcium (Ca2+) uptake, we next analyzed the effect of p13 on Ca2+ homeostasis. Experiments carried out in HeLa cells expressing p13 and organelle-targeted aequorins revealed that the protein specifically reduced mitochondrial Ca2+ uptake. These observations suggest that p13 might control key processes regulated through Ca2+ signaling such as activation and death of T cells, the major targets of HTLV-1 infection.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , ,