Article ID Journal Published Year Pages File Type
8318554 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2015 8 Pages PDF
Abstract
Gonad-inhibiting hormone (GIH) is a member of crustacean hyperglycemic hormone family and plays a major role in regulating reproduction in crustaceans. In this study, a full-length cDNA of GIH of Oriental River prawn, Macrobrachium nipponense (Mn-GIH) was cloned from the eyestalk. A 1350 bp full-length Mn-GIH cDNA harbored 336 bp of an open reading frame encoding signal peptide of 112 amino acid residues. Sequence analysis revealed that the overall cDNA sequence and specific functional sites of Mn-GIH were highly conserved with those in other crustacean species. Expression analysis by quantitative real-time PCR demonstrated its tissue-specific, larval developmental stage-specific, and ovary developmental stage-specific expression pattern, respectively. The RNAi by GIH-ds-RNA in vivo injection was effective in this study and resulted a 50% (day 1), 83% (day 5) and 63% (day 9) down-regulation compared to control. The obvious changes of gonad somatic index (GSI) rate also provided strong evidence to the inhibition effects of GIH on ovary maturation and spawning. Four temperature gradients (12 °C ± 1 °C, 17 °C ± 1 °C, 22 °C ± 1 °C, 27 °C ± 1 °C) were set to imitate the temperature in breeding and non-breeding seasons. The observed expression profiles suggest that Mn-GIH did not display a high level expression as supposed to maintain an immature ovary state under low temperature (12 °C). The results indicated that GIH was probably activated to concentrating and working by a proper temperature before reaching to breeding season.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,