Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8318664 | Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology | 2014 | 9 Pages |
Abstract
The aim of this work was to determine whether different durations of severe hypoxia (0.5 mg O2 Lâ 1) followed by reoxygenation cause damage to the locomotor muscle of the crab Neohelice granulata. We evaluated reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial membrane potential, and aerobic fiber area of the locomotor muscle after different periods of hypoxia (1, 4, or 10 h) followed by 30 or 120 min of reoxygenation. Additionally, changes in cell volume, mitochondrial dysfunction, and infiltration of hemocytes were evaluated after hypoxia and a subsequent 2, 24, or 48 h of reoxygenation. After hypoxia, neither ROS nor LPO increased. However, mitochondrial membrane potential and aerobic fiber area decreased in a time-dependent manner. After reoxygenation, the ROS and LPO levels increased and mitochondrial membrane potential decreased, but these quickly recovered in crabs exposed to 4 h of hypoxia. On the other hand, alterations of mitochondria resulted in morphological changes in aerobic fibers, which required more time to recover during reoxygenation after 10 h of hypoxia. The locomotor muscles of the crab N. granulata suffer damage after hypoxia and reoxygenation. The intensity of this damage is dependent on the duration of hypoxia. In all experimental situations analyzed, the locomotor muscle of this crab was capable of recovery.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Márcio Alberto Geihs, Marcelo Alves Vargas, Luiz Eduardo Maia Nery,