Article ID Journal Published Year Pages File Type
8352571 Plant Physiology and Biochemistry 2018 35 Pages PDF
Abstract
Phenylalanine ammonia-lyase (PAL) is a control point for branched phenylpropanoid and terpenoid pathways. It represents the first regulatory step to provide a metabolic flux to produce of the precursors needed for biosynthesizing main volatile phenylpropanoid compounds (methyleugenol and methylchavicol) in basil. It is crucial during the stage of the environmental and development stimulants. To obtain better knowledge of the biosynthesis of these phenylpropene compounds, characterization and cloning of Ocimum basilicum PAL (ObPAL) cDNA and its heterologous expression and enzyme activity were assessed. The almost full-length ObPAL was 2064 bp in size encoding a 687-amino-acid polypeptide with molecular weight of 74.642 kDa and theoretical pI of 8.62. Phylogenetic analysis revealed a significant evolutionary relatedness of ObPAL with the PAL sequence reported in different species of Lamiaceae. To further confirm its function, ObPAL was cloned into pET28a (+) vector and expressed in E. coli. The recombinant protein exhibited high PAL activity and could catalyze the L-Phe conversion to trans-cinnamic acid. Expression analysis of PAL gene showed that ObPAL manifested various transcription ratios exposed to drought stress. Overall, our results demonstrated the ObPAL regulation gene is possibly a mechanism dependent on cultivar and drought stress.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , ,