Article ID Journal Published Year Pages File Type
8353883 Plant Physiology and Biochemistry 2016 12 Pages PDF
Abstract
The expression profile chip of the wheat salt-tolerant mutant RH8706-49 was investigated under salt stress in our laboratory. Results revealed a novel gene induced by salt stress with unknown functions. The gene was named as TaZNF (Triticum aestivum predicted Dof zinc finger protein) because it contains the zf-Dof superfamily and was deposited in GenBank (accession no. KF307327). Further analysis showed that TaZNF significantly improved the salt-tolerance of transgenic Arabidopsis. Various physiological indices of the transgenic plant were improved compared with those of the control after salt stress. Non-invasive micro-test (NMT) detection showed that the root tip of transgenic Arabidopsis significantly expressed Na+ excretion. TaZNF is mainly localized in the nucleus and exhibited transcriptional activity. Hence, this protein was considered a transcription factor. The TaZNF upstream promoter was then cloned and was found to contain three salts, one jasmonic acid methyl ester (MeJA), and several ABA-responsive elements. The GUS staining and quantitative results of different tissues in the full-length promoter in the transgenic plants showed that the promoter was not tissue specific. The promoter activity in the root, leaf, and flower was enhanced after induction by salt stress. Moreover, GUS staining and quantitative measurement of GUS activity showed that the promoter sequence contained the positive regulatory element of salt and MeJA after their respective elements were mutated in the full-length promoter. RNA-Seq result showed that 2727 genes were differentially expressed; most of these genes were involved in the metabolic pathway and biosynthesis of secondary metabolite pathway.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , ,