Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8357956 | Plant Science | 2015 | 7 Pages |
Abstract
Trichoblasts of trh1 plants form root-hair initiation sites that fail to undergo tip growth resulting in a tiny root-hair phenotype. TRH1 belongs to Arabidopsis KT/KUP/HAK potassium transporter family controlling root-hair growth and gravitropism. Double mutant combinations between trh1 and root-hair mutants affecting cell fate or root-hair initiation exhibited additive phenotypes, suggesting that TRH1 acts independently and developmentally downstream of root-hair initiation. Bimolecular Fluorescence Complementation (BiFC), upon TRH1-YFPC and TRH1-YFPN co-transformation into tobacco epidermal cells, led to fluorescence emission indicative of TRH1 subunit homodimerization. Yeast two-hybrid analysis revealed two types of interactions. The hydrophilic segment between the second and the third transmembrane domain extending from residues Q105 to T141 is competent for a relatively weak interaction, whereas the region at the C-terminal beyond the last transmembrane domain, extending from amino acids R565 to A729, strongly self-interacts. These domains likely facilitate the co-assembly of TRH1 subunits forming an active K+ transport system within cellular membrane structures. The results support the role of TRH1 acting as a convergence point between the developmental root-hair pathway and the environmental/hormonal signaling pathway to preserve auxin homeostasis ensuring plant adaptation in changing environments.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Plant Science
Authors
Gerasimos Daras, Stamatis Rigas, Dikran Tsitsekian, Tefkros A. Iacovides, Polydefkis Hatzopoulos,