Article ID Journal Published Year Pages File Type
8364949 Soil Biology and Biochemistry 2014 6 Pages PDF
Abstract
There were significant differences between soils in potential N2O-reductase activity, but the optimal experimental conditions were similar. The acetylene inhibition technique underestimated N2O-reductase activity in soil relative to the direct-N2 method, especially in the treatment where fertilizer N was withheld for 15 yrs. We recommend that the optimal experimental conditions for the determination of the potential N2O-reductase activity are established also for other soils. More studies are needed to fully understand the interactive effects of long-term N fertilization on nosZ gene expression and N2O-reductase activity in soils.
Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, , , , , ,