Article ID Journal Published Year Pages File Type
8365086 Soil Biology and Biochemistry 2013 11 Pages PDF
Abstract
The slow pool within the mineral soil accounted for 54% of the total dead organic matter C stock. It had a disproportionately small contribution of 8.7% to the total contemporary national-scale Rh estimate and was relatively insensitive to temperature changes. If we accept the space-for-time substitution of temperature sensitivities used in the model parameterization, then these results suggest that the mineral soil decomposition modeled by the CBM-CFS3 will result in a weaker positive feedback in response to an increase in global temperatures than is currently anticipated in other models. However, the majority of the Rh comes from relatively small, but quickly decaying pools. The overall temperature quotient was estimated to be 2.15, which would result in an increase in Rh in response to an increase in global temperatures.
Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, ,