Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8380286 | Current Opinion in Plant Biology | 2018 | 10 Pages |
Abstract
Organisms inhabiting extreme environments are emerging models in systems evolution, enabling us to identify the molecular alterations effecting major phenotypic divergence through comparative approaches. Here I discuss possible physiological mechanisms underlying evolutionary adaptations to extreme environments both theoretically and in relation to experimental observations. Reasoning leads me to the 'conserved steady-state' hypothesis of evolutionary adaptation: Between closely related plants adapted to differently composed soils, the homeostatically controlled steady-state set point cytosolic (buffered) concentrations of mineral ions are conserved. Subsequently, I compare molecular alterations expected to contribute to physiological adaptations with our present knowledge. Key roles of enhanced gene product dosage in plant evolutionary adaptations question the widespread stimulus response-centric paradigm. As a broader implication, co-regulation networks can lack decisive functional network elements. With this article, I hope to stimulate a discussion across research fields and provide an initial conceptual framework for future experimental testing and for quantitative modelling.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Plant Science
Authors
Ute Krämer,