Article ID Journal Published Year Pages File Type
8386858 Journal of Plant Physiology 2018 10 Pages PDF
Abstract
One of the main mechanisms blocking translation after stress situations is mediated by phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2), performed in Arabidopsis by the protein kinase GCN2 which interacts and is activated by ILITHYIA(ILA). ILA is involved in plant immunity and its mutant lines present phenotypes not shared by the gcn2 mutants. The functional link between these two genes remains elusive in plants. In this study, we show that, although both ILA and GCN2 genes are necessary to mediate eIF2α phosphorylation upon treatments with the aromatic amino acid biosynthesis inhibitor glyphosate, their mutants develop distinct root and chloroplast phenotypes. Electron microscopy experiments reveal that ila mutants, but not gcn2, are affected in chloroplast biogenesis, explaining the macroscopic phenotype previously observed for these mutants. ila3 mutants present a complex transcriptional reprogramming affecting defense responses, photosynthesis and protein folding, among others. Double mutant analyses suggest that ILA has a distinct function which is independent of GCN2 and eIF2α phosphorylation. These results suggest that these two genes may have common but also distinct functions in Arabidopsis.
Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , , , ,