Article ID Journal Published Year Pages File Type
8424940 Stem Cell Research 2018 5 Pages PDF
Abstract
Single nucleotide polymorphisms (SNPs) in cytochrome P450 (CYP) isoenzymes alter drug metabolism and pharmacodynamics. In particular, several SNPs within CYPs decrease CYP activities, resulting in a high plasma concentration of drugs and increasing adverse effect of commonly used drugs. Here, we generated two different human induced pluripotent stem cell (hiPSC) lines, which retain defective CYP2C19 or CYP3A5 activities individually. These two hiPSC lines could be valuable sources for understading the interindividual variability in drug responses caused by SNP-induced alteration in CYP activites.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , ,