Article ID Journal Published Year Pages File Type
8426836 Theriogenology 2018 44 Pages PDF
Abstract
In this study, we investigated the effects of Selenium (Se) on the proliferation of and steroidogenesis in goat luteinized granulosa cells (LGCs) and elucidated the mechanisms underlying these effects. Our results showed that proliferating cell nuclear antigen (PCNA), Akt, and phosphoinositide 3-kinase (PI3K) were expressed mainly in ovarian oocytes and granulosa cells (GCs). We observed that 5 ng/mL Se significantly stimulated LGC proliferation, which could be attributed to increases in PCNA, cyclin-dependent kinase 1 (CDK1), phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK; Thr172), and phosphorylated Akt (p-Akt; Ser473) and decreases in p21 (P < 0.05). Se treatment also significantly increased estradiol (E2) production, which could be, at least partially, due to increased levels of 3β-hydroxysteroid dehydrogenase(3β-HSD), steroidogenic acute regulatory protein (StAR), p-Akt (Ser473), and cyclic adenosine monophosphate (cAMP) (P < 0.05); however, follicle-stimulating hormone (FSH) significantly enhanced the production of E2, progesterone (P4) and cAMP (P < 0.05). Moreover, Se treatment stimulated proliferation and the synthesis of E2 and cAMP in the presence of FSH (P < 0.05). Additionally, the expression of antioxidant-related genes [glutathione peroxidase (GSH-Px) and superoxide dismutase 2 (SOD2)] and the activity of GSH-Px and SOD were progressively elevated by Se treatment (P < 0.05). These data suggested that Se plays an important role in the proliferation of and steroidogenesis in LGC by activating the PI3K/Akt and AMPK pathways, thereby increasing the expression of its downstream cell-cycle- and steroid-synthesis-related genes, as well as regulating cellular oxidative stress.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , , , , , ,