Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8493400 | Aquaculture | 2018 | 8 Pages |
Abstract
Ballan wrasse (Labrus bergylta) is an effective counter-measure against sea lice used by Atlantic salmon farmers, proving to be more effective and economical than drugs or chemical treatments alone. There are currently efforts underway to establish a robust culture system for this species, however, essential fatty acid dietary requirements are not known for ballan wrasse. In the present study, we isolated and functionally characterised ballan wrasse fatty acid desaturase (Fads) and elongation of very long-chain fatty acids (Elovl) protein to elucidate their long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capability. Sequence and phylogenetic analysis demonstrated that the cloned genes were fads2 and elovl5 orthologues of other teleost species. Functional characterisations of fads2 and elovl5 were performed using the yeast (Saccharomyces cerevisiae) heterologous expression system. The Fads2 showed Î6 desaturase activity towards 18:3n-3, 18:2n-6 and 24:5n-3, and Î8 desaturase activity towards 20:3n-6 and 20:2n-6. The Elovl5 showed elongase activities towards various C18 and C20 fatty acids. Therefore, 20:4n-3 and 20:3n-6 can be synthesised from 18:3n-3 and 18:2n-6, respectively in ballan wrasse via two possible pathways, the Î6 (Î6 desaturation - elongation) and Î8 (elongation - Î8 desaturation) pathways. However, due to the absence of Î5 desaturase activity and no other Fads2 in their genome, 20:5n-3 (eicosapentaenoic acid, EPA) and 20:4n-6 (arachidonic acid, ARA) cannot be synthesised from C18 PUFA precursors and they could consequently be regarded as dietary essential fatty acids for ballan wrasse. Since no Î4 desaturase activity was detected in ballan wrasse Fads2, 22:6n-3 (docosahexaenoic acid, DHA) can only be synthesised from EPA via the Sprecher pathway comprising two sequential elongation steps to produce 24:5n-3 followed by Î6 desaturation and chain shortening. Although ballan wrasse Elovl5 had no elongase activity towards C22, other elongases such as Elovl4 exist in the ballan wrasse genome that may be able to produce 24:5n-3. Therefore, as ballan wrasse Fads2 can desaturate 24:5n-3 to produce 24:6n-3, it can be assumed that ballan wrasse can synthesise DHA from EPA.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Aquatic Science
Authors
Naoki Kabeya, Simon Yevzelman, Angela Oboh, Douglas R. Tocher, Oscar Monroig,