Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8501273 | Journal of Dairy Science | 2018 | 10 Pages |
Abstract
α-Lactalbumin (α-LA) is the second most abundant bovine whey protein. It has been intensively studied because of its readiness to populate the molten globular (MG) state, a partially folded state with native levels of secondary structure but loss of tertiary structure. The MG state of α-LA exposes a significant number of hydrophobic patches that could be used to bind and stabilize small hydrophobic molecules such as vitamin D3 (vitD). Accordingly, we tested the ability of α-LA to stabilize vitD in a pH interval from 7.4 to 2; over this pH interval, α-LA transitions from the folded state to the MG state. The MG state stabilized vitD better than the folded state and was superior to the major bovine whey protein β-lactoglobulin (β-LG), which is known to stabilize vitD. At pH 7.4, β-LG and α-LA stabilized vitD to the same extent. Tryptophan fluorescence quenching measurements indicated that α-LA has one binding site at pH 7.4 but acquires an additional binding site when the pH is lowered to pH 2 to 4. Stability measurements of the vitD in the α-LA-vitD complex at different temperatures suggest that UHT processing would lead to little loss of vitD. This study demonstrates the potential of α-LA as a component in vitD fortification, particularly for low pH applications.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
Jannik Nedergaard Pedersen, Henrik V. Sørensen, Daniel E. Otzen,