Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8504014 | Research in Veterinary Science | 2018 | 24 Pages |
Abstract
Salmonella infects many vertebrate species, and animals such as pigs can be colonized with Salmonella and become established carriers. Analyzing the roles of microRNA in intracellular proliferation is important for understanding the process of Salmonella infection. The objective of this study is to verify the regulation effect of miR-143 on ATP6V1A and its functions in the intracellular growth of Salmonella. A new miR-143 binding site was discovered in the 3â² UTR of ATP6V1A using a newly developed prediction tool. The binding site was confirmed by binding site deletion assay. Real-time PCR results indicated that ATP6V1A was predominantly expressed in bone-marrow-derived macrophages, and the expression of miR-143 in different tissues was negatively correlated with ATP6V1A. The Salmonella proliferation assay showed that the expression of miR-143 could inhibit intracellular Salmonella growth in macrophages by target ATP6V1A. The results strongly suggest that miR-143 plays important regulatory roles in the development of Salmonella infection in animals.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
Tinghua Huang, Xiali Huang, Min Yao,