Article ID Journal Published Year Pages File Type
8505572 Veterinary Microbiology 2018 9 Pages PDF
Abstract
Among them, 20% (32/160) carried at least one PMQR (18/32 qnrB, qnrS or qnrD, 10/32 aac(6′)-Ib-cr and 13/32 oqxAB), and 80% (128/160) no PMQR. qnrB was detected in 3 E. coli, 2 K. pneumoniae and 1 E. cloacae strains; qnrS in 6 E. coli and 1 P. mirabilis and aac(6′)-Ib-cr in 4 E. coli, 5 K. pneumoniae and 1 E. cloacae strains. All qnrD1 were detected in P. mirabilis. oqxAB was detected in 12/14 K. pneumoniae and 1 E. cloacae. No qepA genes were detected. From the 32 PMQR-positive strains, 10 showed enrofloxacin MICs ≤2 mg/L and 22 MICs ≥8 mg/L, the latter carrying 1-4 mutations in QRDR. For the 128 non-PMQR strains, 37 showed enrofloxacin MICs ≤2 mg/L with 0-2 QRDR mutations, and 91 MICs ≥4 mg/L carrying 1-4 QRDR mutations. In conclusion, qnr was the major PMQR and qnrD only detected in Proteeae. Mutations in QRDR play a markedly greater role in mediating fluoroquinolone resistance than PMQR.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , , ,