Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8505580 | Veterinary Microbiology | 2018 | 7 Pages |
Abstract
Bovine respiratory disease (BRD) is a major problem for the cattle industry that is triggered by various environmental stressors, pathogens and host responses. Mannheimia hemolytica, an important bacterial component of BRD, are present within the nasopharayngeal region of normal calves as commensal biofilm communities. However, following stress there are changes in the nasopharyngeal microenvironment that triggers the transition of the commensal M. haemolytica into a pulmonary pathogen. The factors responsible for this transition in- vivo are unknown. In this study we developed an in-vitro biofilm model and investigated the effect of three stress- related compounds: norepinephrine (NE), epinephrine (E), and substance P (SP) on M. haemolytica biofilms. Biofilm formation was demonstrated for 3 bovine nasal isolates of M. haemolytica by growing them in basal culture media, basal media with additional glucose, and basal media with a reduced pH. Increased glucose enhanced biofilm biomass for 2/3 isolates, but acidic media did not increase biofilm biomass when compared to biofilm biomass in basal media. When the biofilm was exposed to NE, E and SP, there was a dispersal of the biofilm which was most effective with E, followed by NE, and SP being the least effective. Using high - throughput scanning electron microscopy and confocal-imaging we confirmed our experimental data that treatment with NE, E and SP cause dispersion of M.haemolytica from biofilms.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
Deepti K. Pillai, Elva Cha, Derek Mosier,