Article ID Journal Published Year Pages File Type
8646580 Infection, Genetics and Evolution 2018 8 Pages PDF
Abstract
We isolated and characterized two novel rV5-like lytic bacteriophages from independently collected food samples. Nucleotide sequence analysis revealed that these phages have linear double-stranded DNA genomes comprising 138,073 bp with 213 CDS and 5 tRNA genes. The two genomes contain completely identical nucleotide sequence, albeit there is a 10,718 bp-long shift in the sequence. The GC content of the phage genomes was 43.7% and they showed high general homology to rV5-like phages. The new phages were termed C203 and P206. The genome of both phages contains a unique ORF that encodes for a putative phage homing endonuclease. The phage produced clear plaques with a burst size of approx. 1000 viral particles and a latent period of 60 min. Morphological investigation indicated that the new phages are members of the family Myoviridae with an approximate head length of 85 nm, tail length of 75 nm, and a head width of 96 nm. C203 and P206 exhibit a broad and uniform host range, which included enterohemorrhagic Escherichia coli strains of serogroup O157, multi drug resistant (MDR) E. coli strains of various sero- and pathotypes, and both Shigella sonnei and S. dysenteriae strains. C203 and P206 both effectively reduced the number of living EHEC O157:H7 Sakai in experimentally inoculated minced meat. The same broad host range, the lack of any virulence related genes, the stability and its short latent period suggest that these newly found phages could be suitable candidates as a bio-control agents against food-borne pathogenic Enterobacteria.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , ,