Article ID Journal Published Year Pages File Type
8649988 Journal of Thermal Biology 2018 10 Pages PDF
Abstract
Anurans exhibit plasticity in the timing of metamorphosis and tadpoles show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. This developmental plasticity to changing thermal conditions is expected to be a primary factor that dictates the vulnerability of amphibians to increasing ambient temperatures such as are predicted in climate change scenarios. We analyzed the patterns of thermal effects on size and age at metamorphosis to investigate whether the intraspecific “temperature-size rule” is applicable over a broad range of anuran species by carrying out a combined analysis based on the data from 25 studies performed on 18 anuran species. Furthermore, we tested whether the thermal background of respective populations impacts the capacity for a plastic response in metamorphic traits. We could confirm this pattern for across-population comparisons. All included populations developed faster and 75% were smaller at the onset of metamorphosis when developmental temperatures were warmer, but the sensitivity of growth and developmental rate to a given temperature change was different. We found that the thermal background of a population influences the sensitivity of metamorphic traits and thus, the capacity for a plastic response in growth and developmental rate. Warm adapted populations were less sensitive to temperature variation indicating a reduced capacity for developmental plasticity and therefore, those species may be more vulnerable to the impacts of climate change. Future studies should include a broader range of rearing temperatures and temperature fluctuations to determine full knowledge of the capacity for developmental plasticity within a species-specific thermal window.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , ,