Article ID Journal Published Year Pages File Type
88126 Forest Ecology and Management 2011 10 Pages PDF
Abstract

Anthropogenic understory fires have affected large areas of tropical forest in recent decades, particularly during severe droughts. Yet, the mechanisms that control fire-induced mortality of tropical trees and lianas remain ambiguous due to the challenges associated with documenting mortality given variation in fire behavior and forest heterogeneity. In a seasonally dry Amazon forest, we conducted a burn experiment to quantify how increasing understory fires alter patterns of stem mortality. From 2004 to 2007, tree and liana mortality was measured in adjacent 50-ha plots that were intact (B0 – control), burned once (B1), and burned annually for 3 years (B3). After 3 years, cumulative tree and liana mortality (≥1 cm dbh) in the B1 (5.8% yr−1) and B3 (7.0% yr−1) plots significantly exceeded mortality in the control (3.2% yr−1). However, these fire-induced mortality rates are substantially lower than those reported from more humid Amazonian forests. Small stems were highly vulnerable to fire-induced death, contrasting with drought-induced mortality (measured in other studies) that increases with tree size. For example, one low-intensity burn killed >50% of stems <10 cm within a year. Independent of stem size, species-specific mortality rates varied substantially from 0% to 17% yr−1 in the control, 0% to 26% yr−1 in B1, and 1% to 23% yr−1 in B3, with several species displaying high variation in their vulnerability to fire-induced mortality. Protium guianense (Burseraceae) exhibited the highest fire-induced mortality rates in B1 and B3, which were 10- and 9-fold greater than the baseline rate. In contrast, Aspidosperma excelsum (Apocynaceae), appeared relatively unaffected by fire (0.3% to 1.0% mortality yr−1 across plots), which may be explained by fenestration that protects the inner concave trunk portions from fire. For stems ≥10 cm, both char height (approximating fire intensity) and number of successive burns were significant predictors of fire-induced mortality, whereas only the number of consecutive annual burns was a strong predictor for stems <10 cm. Three years after the initial burn, 62 ± 26 Mg ha−1 (s.e.) of live biomass, predominantly stems <30 cm, was transferred to the dead biomass pool, compared with 8 ± 3 Mg ha−1 in the control. This biomass loss from fire represents ∼30% of this forest's aboveground live biomass (192 (±3) Mg ha−1; >1 cm DBH). Although forest transition to savanna has been predicted based on future climate scenarios, our results indicate that wildfires from agricultural expansion pose a more immediate threat to the current carbon stocks in Amazonian forests.

Research highlights▶ After single and repeat burns, tree and liana mortality was double baseline rates. ▶ Small stems were highly vulnerable to fire-induced death. ▶ Four common species had fire-induced mortality rates quadruple the control. ▶ A third of the aboveground biomass was killed by a single fire. ▶ Wildfires pose an immediate threat to carbon stocks of Amazonian forests.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , , ,