Article ID Journal Published Year Pages File Type
88351 Forest Ecology and Management 2010 9 Pages PDF
Abstract

Black cottonwood (Populus trichocarpa Torr. and Gray) is a deciduous tree species that extends from Alaska through coastal regions of western Canada into the northwestern United States and as far south as Baja California. We examined the influence of black cottonwood on soil fertility within a forest dominated by Douglas-fir [Pseudotsuga menziessi (Mirb.) Franco], western hemlock [Tsuga heterophylla (Raf.) Sarg], and western red cedar (Thuja plicata Donn ex. D. Don.). Six circular 0.008 ha plots with a single cottonwood tree in the center of conifers were paired with six conifer plots (of the same size) without cottonwood. Litterfall, litter decomposition, properties of forest floor and mineral soil, and N mineralization were compared between plot types. Cottonwood litter had higher concentrations of almost all elements relative to conifer litter. Mass loss did not differ between cottonwood and fir/hemlock litter on cottonwood sites. Twice the amount of mull-like humus form (vermimull and mullmoder, 56%) was found in cottonwood plots compared to 28% in conifer plots. Higher pH (4.4) was found in the forest floor under cottonwood compared to conifer (3.9). Total N concentration (3.33 g/kg) and base saturation (68%) were higher in the mineral soil under cottonwood compared to conifers (2.98 g/kg total N and 50% base saturation). Net ammonification and net mineralization were both lower under cottonwood. These results suggest a variable effect of cottonwood on soil fertility within coastal western hemlock forests with some soil variables changed in a favourable direction and some in an unfavourable direction.

Research highlights▶ Black cottonwood litter did not decompose faster than fir/hemlock litter. ▶ Net mineralization was lower beneath black cottonwood than beneath conifers. ▶ Total N of mineral soil and pH of forest floor were higher under cottonwood trees. ▶ Cottonwood had a variable effect on soil fertility.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,