| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 8842773 | Fungal Biology | 2018 | 29 Pages | 
Abstract
												Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus. The gliotoxin bis-thiomethyltransferase, GtmA, attenuates gliotoxin biosynthesis in A. fumigatus by conversion of dithiol gliotoxin to bis-thiomethylgliotoxin (BmGT). Here we show that disruption of dithiol gliotoxin bis-thiomethylation functionality in A. fumigatus results in significant remodelling of the A. fumigatus secondary metabolome upon extended culture. RP-HPLC and LC-MS/MS analysis revealed the reduced production of a plethora of unrelated biosynthetic gene cluster-encoded metabolites, including pseurotin A, fumagillin, fumitremorgin C and tryprostatin B, occurs in A. fumigatus ÎgtmA upon extended incubation. Parallel quantitative proteomic analysis of A. fumigatus wild-type and ÎgtmA during extended culture revealed cognate abundance alteration of proteins encoded by relevant biosynthetic gene clusters, allied to multiple alterations in hypoxia-related proteins. The data presented herein reveal a previously concealed functionality of GtmA in facilitating the biosynthesis of other BGC-encoded metabolites produced by A. fumigatus.
											Related Topics
												
													Life Sciences
													Agricultural and Biological Sciences
													Agricultural and Biological Sciences (General)
												
											Authors
												Sean Doyle, Gary W. Jones, Stephen K. Dolan, 
											