Article ID Journal Published Year Pages File Type
8846564 Applied Soil Ecology 2018 12 Pages PDF
Abstract
Characterising spatial microbial community structure is important to understand and explain the consequences of continuous plantation of one crop species on the performance of subsequent crops, especially where this leads to reduced growth vigour and crop yield. We investigated the spatial structure, specifically distance-decay of similarity, of soil bacterial and fungal communities in two long-established orchards with contrasting agronomic characteristics. A spatially explicit sampling strategy was used to collect soil from under recently grubbed rows of apple trees and under the grassed aisles. Amplicon-based metabarcoding technology was used to characterise the soil microbial communities. The results suggested that (1) most of the differences in soil microbial community structure were due to large-scale differences (i.e. between orchards), (2) within-orchard, small-scale (1-5 m) spatial variability was also present, but spatial relationships in microbial community structure differed between orchards and were not predictable, and (3) vegetation type (i.e. trees or grass and their associated management) can significantly alter the structure of soil microbial communities, affecting a large proportion of microbial groups. The discontinuous nature of soil microbial community structure in the tree stations and neighbouring grass aisles within an orchard illustrate the importance of vegetation type and allied weed and nutrient management on soil microbial community structure.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , ,