Article ID Journal Published Year Pages File Type
8876177 Journal of Integrative Agriculture 2016 6 Pages PDF
Abstract
Staphylococcus aureus is the most common etiological pathogen of bovine mastitis. The resistant strains make the disease difficult to cure. The aim of this study was to characterize the genetic nature of the antimicrobial resistance in S. aureus cultured from bovine mastitis in Northwest China in 2014. A total of 44 S. aureus were isolated for antimicrobial resistance and resistance-related genes. Antimicrobial resistance was determined by disc diffusion and the corresponding resistance genes were detected by PCR. Phenotype indicated that S. aureus isolates were resistant to penicillin (84.09%), erythromycin (20.45%), tetracycline (15.91%), gentamicin (9.09%), tobramycin (6.82%), kanamycin (6.82%) and methicillin (2.27%). 9.09% of the S. aureus isolates were classified as multidrug resistant. In addition, genotypes showed that the isolates were resistant to rifampicin (100%, rpoB), penicillin (95.45%, blaZ), tetracycline (22.73%, tetK, tetM, alone or in combination), erythromycin (22.73%, ermB or ermC), gentamicin/tobramycin/kanamycin (2.27%, aacA-aphD), methicillin (2.27%, mecA) and vancomycin (2.27%, vanA). Resistance to tetracycline was attributed to the genes tetK and tetM (r=0.558, P<0.001). This study noted high-level geno- and phenotypic antimicrobial resistance in S. aureus isolates from bovine mastitis cases in Northwest China.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , ,