Article ID Journal Published Year Pages File Type
8876535 Journal of Theoretical Biology 2018 38 Pages PDF
Abstract
Understanding the emergence of biological structures and their changes is a complex problem. On a biochemical level, it is based on gene regulatory networks (GRN) consisting on interactions between the genes responsible for cell differentiation and coupled in a greater scale with external factors. In this work we provide a systematic methodological framework to construct Waddington's epigenetic landscape of the GRN involved in cellular determination during the early stages of development of angiosperms. As a specific example we consider the flower of the plant Arabidopsis thaliana. Our model, which is based on experimental data, recovers accurately the spatial configuration of the flower during cell fate determination, not only for the wild type, but for its homeotic mutants as well. The method developed in this project is general enough to be used in the study of the relationship between genotype-phenotype in other living organisms.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,