Article ID Journal Published Year Pages File Type
8883761 Aquatic Toxicology 2018 11 Pages PDF
Abstract
In this paper we present, for the first time, a detailed account of electrophysiological effects of 2,4-diaminobutyric acid (2,4-DABA). 2,4-DABA is a neurotoxic non-protein amino acid produced by Cyanobacteria with a possible link to neurodegenerative disorders in animals and humans. Intracellular recordings were performed on Retzius nerve cells of the leech Haemopis sanguisuga using glass microelectrodes filled with 3 mol/L KCl. Our results show that 2,4-DABA is an excitatory amino acid, causing membrane depolarization in a concentration-dependent manner. The most prominent depolarizations of 39.63±2.22 mV and 47.05±4.33 mV, induced by 5×10−3 and 10−2 mol/L 2,4-DABA respectively, are several times larger than maximal depolarizations induced by either Glutamate, Aspartate, β-N-methylamino-alanine (BMAA) or β-N-oxalylamino-alanine (BOAA) on our model. These 2,4-DABA induced depolarizations evolve through two distinct stages, which is a novel phenomenon in electrical cell activity upon application of an excitatory amino acid, at least on our model. Involvement of two separate mechanisms, suggested by the two stage phenomenon, is discussed in the paper. We also provide evidence that 2,4-DABA induces irreversible functional disturbances in neurons in a concentration-dependent manner, since only half of the cells recovered normal electrical activity after application of 5×10−3 mol/L 2,4-DABA, and none recovered after application of 10−2 mol/L 2,4-DABA. Effects of both L-2,4-DABA and DL-2,4-DABA were tested and are not significantly different.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , , ,