Article ID Journal Published Year Pages File Type
8885695 Harmful Algae 2018 9 Pages PDF
Abstract
The harmful dinoflagellate, Karlodnium veneficum, has been implicated in fish-kill and other toxic, harmful algal bloom (HAB) events in waters worldwide. Blooms of K. veneficum are known to be related to coastal nutrient enrichment but the relationship is complex because this HAB taxon relies not only on dissolved nutrients but also particulate prey, both of which have also changed over time. Here, applying cross-correlations of climate-related physical factors, nutrients and prey, with abundance of K. veneficum over a 10-year (2002-2011) period, a synthesis of the interactive effects of multiple factors on this species was developed for Chesapeake Bay, where blooms of the HAB have been increasing. Significant upward trends in the time series of K. veneficum were observed in the mesohaline stations of the Bay, but not in oligohaline tributary stations. For the mesohaline regions, riverine sources of nutrients with seasonal lags, together with particulate prey with zero lag, explained 15%-46% of the variation in the K. veneficum time series. For the oligohaline regions, nutrients and particulate prey generally showed significant decreasing trends with time, likely a reflection of nutrient reduction efforts. A conceptual model of mid-Bay blooms is presented, in which K. veneficum, derived from the oceanic end member of the Bay, may experience enhanced growth if it encounters prey originating from the tributaries with different patterns of nutrient loading and which are enriched in nitrogen. For all correlation models developed herein, prey abundance was a primary factor in predicting K. veneficum abundance.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,