Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
88869 | Forest Ecology and Management | 2009 | 14 Pages |
This article quantifies pre- to post-harvest gaseous N emissions and other N losses from forest soils and basins geospatially and temporally via digital elevation and hydrological modeling, using daily rain, snow and air temperature records, annual atmospheric N deposition rates, and basin-specific soil and forest specifications as input. The approach relates gaseous N losses from soils to soil temperature and water-filled pore space (WFPS) as affected by the depth-to-water (DTW) below the soil surface. The approach is applied to the Turkey Lakes Watershed Project (TLW) in Ontario, 60 km north of Sault St. Marie, where basin-wide N losses due to denitrification would mostly be restricted to the wetland portions of the basin. Basin-wide N losses via denitrification and stream export (mineral N and dissolved organic N) were empirically related to upland N mineralization and soil leaching as controlling processes. The calibrated model calculations, set to conform to the field-monitored N concentrations in TLW streams, suggest that the harvest-induced nitrification and denitrification pulses would be strongest near the end of the first post-harvest year, dropping to background levels within about 4–5 years later. The article concludes with assessing basin-specific denitrification efficiencies in relation to atmospheric N deposition and basin-to-basin wetland coverage.