Article ID Journal Published Year Pages File Type
89503 Forest Ecology and Management 2008 11 Pages PDF
Abstract

Detecting changes in forest soil C and N is vital to the study of global budgets and long-term ecosystem productivity. Identifying differences among land-use practices may guide future management. Our objective was to determine the relation of minimum detectable changes (MDCs) and minimum detectable differences between treatments (MDDs) to soil C and N variability at multiple spatial scales. The three study sites were 70–100-year-old coniferous forests in Washington and Oregon. Area- and volumetric-based soil measurements were made before implementation of 7 treatments on 2-ha experimental units, replicated in 3 or 4 blocks per site. In the absence of treatment effects, whole-site MDCs are ∼10% for mineral soil C and N masses and concentrations and ∼40% for O-horizon C and N masses. When treatment differences occur, MDDs are ∼40% for mineral soil and ∼150% for O-horizon. MDDs are reduced as much as two-thirds by evaluating change from pre- to post-treatment rather than only post-treatment values, and by pairing pre- and post-treatment measurements within small subplots. The magnitude of MDD reduction is quantitatively related to pre-treatment soil variability at multiple spatial scales, with the greatest reductions associated with the largest within-block:within-plot and within-plot:within-subplot variability ratios. These quantified benefits can be weighed against costs and challenges to make informed decisions when selecting the most appropriate sampling design.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , ,