Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8953593 | Neurocomputing | 2018 | 29 Pages |
Abstract
We present a novel convolutional neural network (CNN) based pipeline which can effectively fuse multi-level information extracted from different intermediate layers generating hybrid convolutional features (HCF) for edge detection. Different from previous methods, the proposed method fuses multi-level information in a feature-map based manner. The produced hybrid convolutional features can be used to perform high-quality edge detection. The edge detector is also computationally efficient, because it detects edges in an image-to-image way without any post-processing. We evaluate the proposed method on three widely used datasets for edge detection including BSDS500, NYUD and Multicue, and also test the method on Pascal VOC'12 dataset for object contour detection. The results show that HCF achieves an improvement in performance over the state-of-the-art methods on all four datasets. On BSDS500 dataset, the efficient version of the proposed approach achieves ODS F-score of 0.804 with a speed of 22 fps and the high-accuracy version achieves ODS F-score of 0.814 with 11 fps.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Xiaowei Hu, Yun Liu, Kai Wang, Bo Ren,